Recap

Tarlier Linear system: x= Ax+Bu, y= Cx+Du Input: $u(t) = e^{st}$ (complex $s \neq \lambda(A)$). Steady-state output: $y_{ss}(t) = [D + C(sI - A)^{-}B]u(t)$ Last lecture For an ODE with output y and input u of the form d'y

tan

d'y

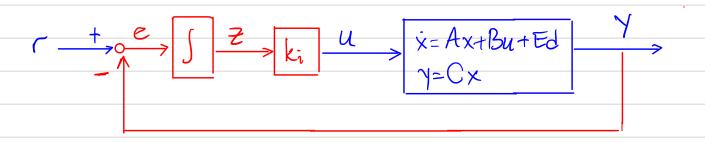
tany = bb dmy + br dm-14 + - - + bm u. the trunsfer function is $G(s) = \frac{b(s)}{a(s)} = \frac{b_0 s^m + b_1 s^{m-1} + - - + b_m}{s^m + a_1 s^{m-1} + - - + a_n}$ Poles of G = roots of a(s)=0 Poles of G = roots of b(s)=0 "Poles of G = eigenvalues of A"

Today: PID controllers.

Relevant parts from the book: Section 10.1 (Basic Control Functions)

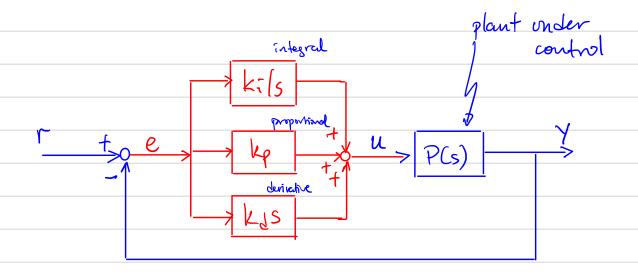
Proportional-integral-derivative (PID) control

Recall the control structure from the previous time we used integral action.

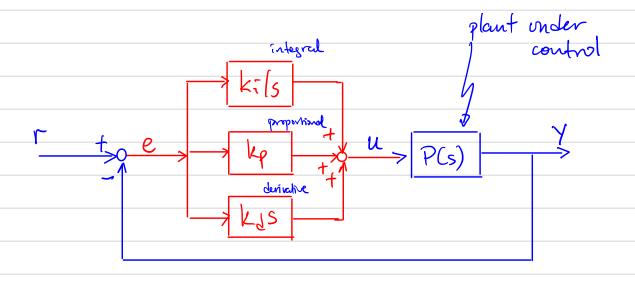


Now, we will work with transfer function representation of the system and controller.

Additionally, we will extend the controller structure.



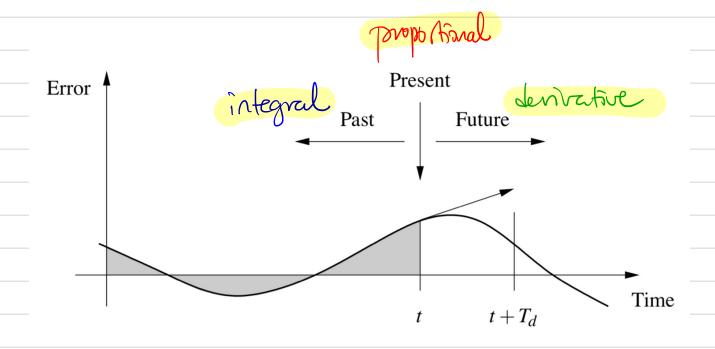
Proportional-integral-derivative (PID) control



elt)=rlt)-ylt); error signal

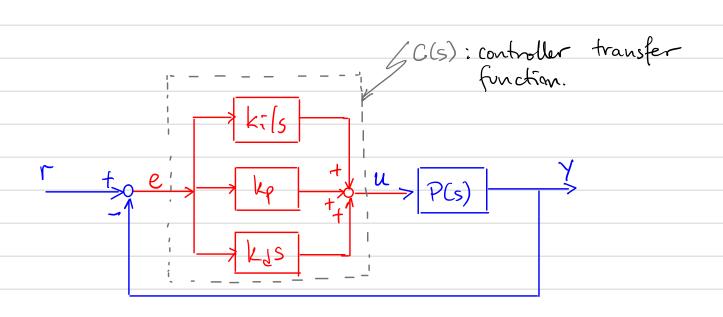
Transfer function from e to v: C(s) = kp+k= + + kds

Another interpretation of P, I and D terms



- · Proportional part depends on the instantenous error value.
- · Integral part is based on the integral of the error upto time to.
- · Derivative part provides an estimate of the growth of the error.

Closed-loop transfer function with a PID controller.



The transfer function from r to y:

$$G_{rg}(s) = \frac{P(s)C(s)}{I+P(s)C(s)}$$

· Also, recall that the steady-state gain for a stable system modeled by a transfer function H(s) under step input is H(o).

First, consider pure tonoportional feedback (i.e., ki=0 and kd=0).

The steady state output due to a unit step reference input is equal to

Yss = 6mg(0) · 1 = (C(0) P(0))

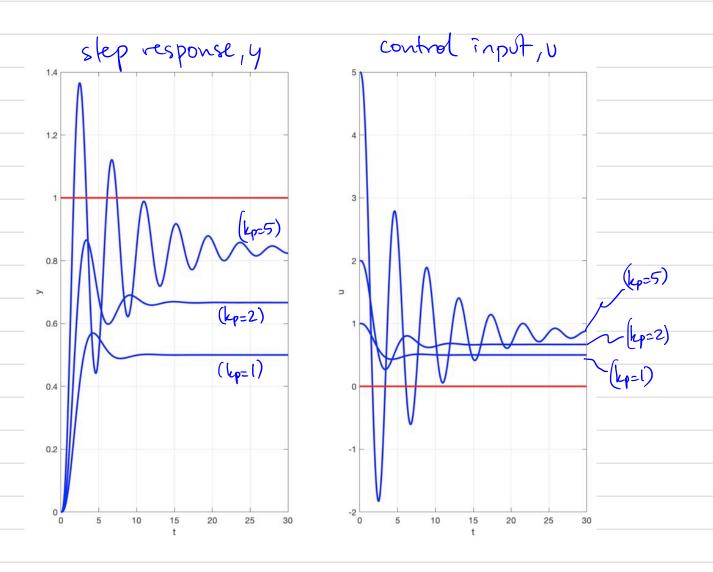
C(s) = kp = C(0) = kp

Yss = kp P(0) 1+kp P(0)

One can adjust kp to make yss as close to I as possible.

Example (with P-term only)

P(s)= (5+1)3



Increase lep:

- · Reduces the steady-state error
- · But, also introduces (larger) oscillations and overshoot.

Introduce integral feedbach C(s)=kp+ki-s

$$\frac{\left(k_{p}+\frac{k_{i}}{s}\right) P(s)}{\left(k_{p}+\frac{k_{i}}{s}\right)}$$

$$=\frac{\left(k_{p}s+k_{i}\right) \frac{1}{s} P(s)}{s+P(s) \left(k_{p}s+k_{i}\right) \frac{1}{s}} =\frac{\left(k_{p}s+k_{i}\right) P(s)}{s+P(s) \left(k_{p}s+k_{i}\right)}$$

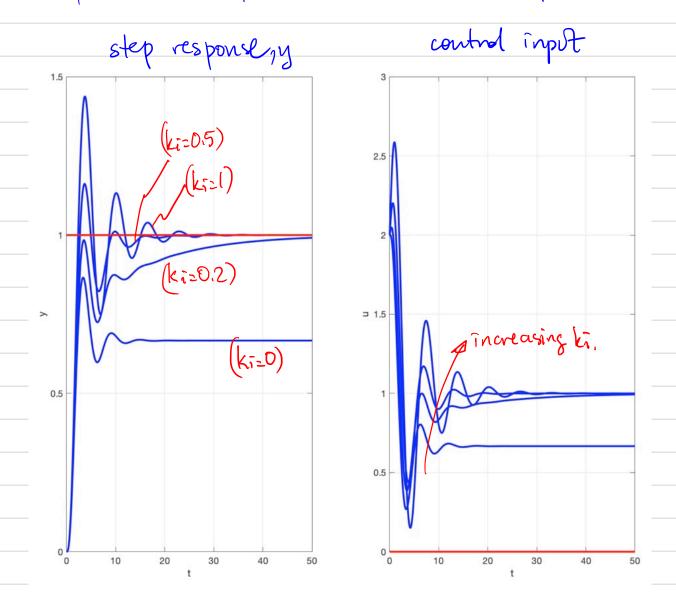
The steady-state output due to unit step reference inpot:

- · Perfect reference tracking
- · Independent from the plant parameters.

Recalli This is an important result. But, it is not news for us. We already had seen this fact. We just derived in a different way now.

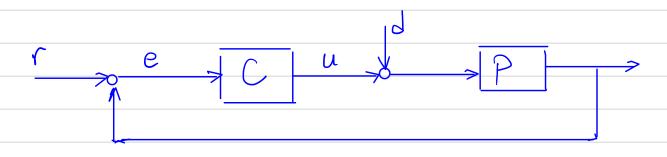
Example (with P and I terms)

Same plant as before. Fixed kp=2. Vary ki.



- · tero lis >> non-zero steady-state error
- · Nonzero li => Zero steaty-state error
- · As ki increases, the approach to the steady-state output is faster.
- · As ki increases, the system becomes more oscillatory.

Another usofil property of integral action: Listerbance allewation

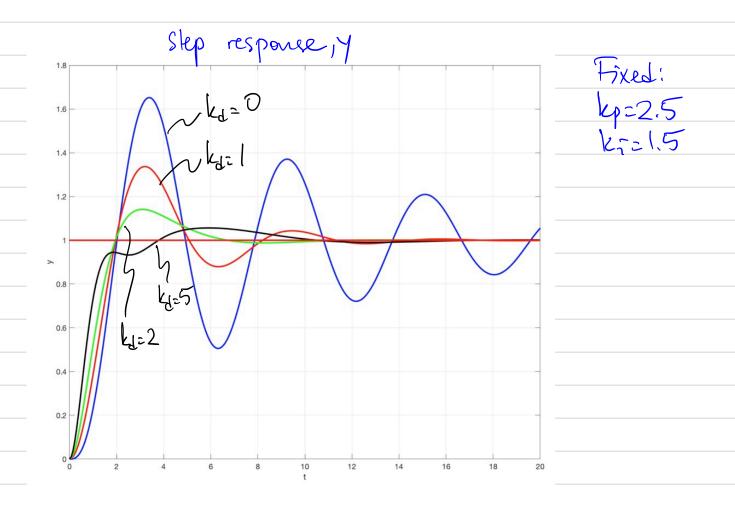


Assume r=0 and I is ont step disturbance.
Only integral action: C(s)= ki/s.

$$G_{34}(s) = \frac{P(s)}{1+P(s)C(s)} = \frac{s P(s)}{s+P(s)E_i}$$

Let us now add the dentrative term: C(s)= lep + lets + leds.

Chech the response under unit step ireference r:



With increasing by, the closed-loop system becomes more Lampert.

Example (effect of the lest-term)

Let the reference be r=0. We will analyze the free response of the closed-loop system

Open-loop system;

y + x, y + x24 = 4

Denvetire control:

u= kde = kd(r-y)=-kdy

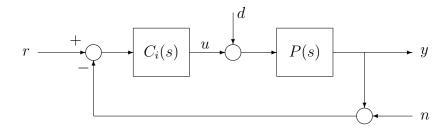
Closed-loop system: y + (x, +kx) y + x2 y = 0.

di: unchanged => wn: unchanged.

choose les to încrease dithe = 28 cm

From Milterm 2, Spring 2019

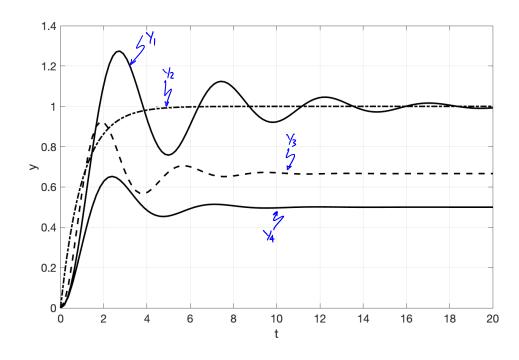
1. Let P(s) be the transfer function for a stable, second-order linear system, and consider the feedback interconnection below, where $C_i(s)$ is the transfer function for a controller.



Consider four different controllers given by the following transfer functions:

- $C_1(s) = 1$
- $C_2(s) = 2$
- $C_3(s) = 1 + \frac{1}{s}$
- $C_4(s) = 1 + \frac{1}{s} + s$

The figure below shows the unit step responses (Y_1, \ldots, Y_4) from r to y for the closed-loop system with these four different controllers. Match C_1, \ldots, C_4 to Y_1, \ldots, Y_4 . Show the matching in the table in the next page, and briefly explain your reasoning.



Controller	Response
C_1	44
C_2	43
C_3	71
C_4	42

* Y3 and Y4 have steady-state errors.

Hence they are for proportional-only
controllers. Y3 has smaller error;

therefore, it's for the larger gain.

* Ye has more oscillations than Yz.

Hence, Yz includes the derivative

term.